Random Projections for Semidefinite Programming
نویسندگان
چکیده
Random projections can reduce the dimensionality of point sets while keeping approximate congruence. Applying random to optimization problems raises many theoretical and computational issues. Most issues in application conic programming were addressed Liberti et al. (Linear Algebr. Appl. 626:204–220, 2021) [1]. This paper focuses on semidefinite programming.
منابع مشابه
Random Conic Pursuit for Semidefinite Programming
We present a novel algorithm, Random Conic Pursuit, that solves semidefinite programs (SDPs) via repeated optimization over randomly selected two-dimensional subcones of the PSD cone. This scheme is simple, easily implemented, applicable to very general SDPs, scalable, and theoretically interesting. Its advantages are realized at the expense of an ability to readily compute highly exact solutio...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملA path-following infeasible interior-point algorithm for semidefinite programming
We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...
متن کاملSemidefinite Programming
3 Why Use SDP? 5 3.1 Tractable Relaxations of Max-Cut . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Simple Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Trust Region Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.3 Box Constraint Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.4 Eigenvalue Bound . . . . . . . . . . . . ...
متن کاملSemidefinite Programming
In semidefinite programming, one minimizes a linear function subject to the constraint that an affine combination of symmetric matrices is positive semidefinite. Such a constraint is nonlinear and nonsmooth, but convex, so semidefinite programs are convex optimization problems. Semidefinite programming unifies several standard problems (e.g., linear and quadratic programming) and finds many app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIRO Springer series
سال: 2023
ISSN: ['2523-7055', '2523-7047']
DOI: https://doi.org/10.1007/978-3-031-28863-0_9